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Abstract
Let T be an algebraic triangulated category and C an extension-closed subcategory with
Hom(C, �<0C) = 0. Then C has an exact structure induced from exact triangles in T . Keller
and Vossieck say that there exists a triangle functor Db(C) → T extending the inclusion
C ⊆ T . We provide the missing details for a complete proof.
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1 Introduction

Let T be a triangulated category and C full additive subcategory with an exact structure. A
realization functor for C is a triangle functor Db(C) → T extending the inclusion. There are
various constructions of a realization functor, all requiring an enhancement and restricting
to certain subcategories C. The first realization functor was constructed in [2] when C is the
heart of a t-structure in a filtered triangulated category; also see [27, Appendix]. A different
construction appears in [23].

In this paper we work in algebraic triangulated categories; these include all stable module
categories and derived categories. Unlike the works mentioned above we consider exact
subcategories of T , not hearts of t-structures. There exist exact categories whose bounded
derived category does not admit a bounded t-structure; see [24].

The following result appears in [21, 3.2 Théorème]:

Theorem 1.1 Let T be an algebraic triangulated category and C an extension-closed full
subcategory with HomT (C, �−nC) = 0 for n ≥ 1. Then C has an exact structure induced
from the triangulated structure on T and there exists a realization functor.
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The article [21, 3.2 Théorème] provides a sketch of the proof, referring to a construction
later appearing in [15]. The main goal of this paper is to provide the missing details for a
complete proof of Theorem 1.1.

The non-negativity condition in Theorem 1.1 for C is necessary for our construction. It
also appears when the realization functor is a triangle equivalences. In fact, whenever the
realization functor is fully faithful, then C has to satisfy the non-negativity condition.

Theorem 1.1 can be considered the standard tool to realize an (algebraic) triangulated
as a bounded derived category of an exact category; we provide conditions for when the
realization functor is an equivalence in Sect. 2.16. Therefore, Theorem 1.1 is expected to
be used in classifications of exact subcategories of a triangulated category up to (bounded)
derived equivalence.

Further, finding a realization functor is an alternative to tilting theory. Tilting subcategories
in a triangulated category were defined by Keller; see for example [18]. A subcategory C of
T is tilting, if C is endowed with the split exact structure, hence Db(C) = Kb(C), and the
realization functor Kb(C) → T exists and is a triangle equivalence. There exist realization
functors that are equivalences that are not induced by tilting theory; for example the inclusion
of a small exact category into its weak idempotent completion induces a triangle equivalence
on their bounded derived categories; see [22, 1.10].

In general it is not knownwhether a realization functor of a category C is unique. However,
it is unique with respect to the chosen enhancement. Theorem 1.1 is also central to the search
for a universal property defining the bounded derived category of an exact category; cf. [16]
and for derivators [25].

2 Realization functor

The bounded derived category of an exact category C is the Verdier quotient of the homotopy
category of the underlying additive category by the full subcategory of bounded C-acyclic
complexes Acb(C); see [22] and also [6, Section 10]. We fix a triangulated category T with
suspension functor �. A realization functor for an additive subcategory C of T with an exact
structure is a triangle functor Db(C) → T extending the inclusion C → T .

2.1 Admissible exact subcategories

In this work we focus on subcategories C of the triangulated category T that inherit their
exact structure from the triangulated structure of T .

Definition 2.2 A full subcategory C is called non-negative if HomT (C, �<0C) = 0; this
means HomT (X , �nY ) = 0 for any X , Y ∈ C and n < 0. When C is additionally closed
under extensions and direct summands, we say C is admissible exact.

By [9], any extension-closed, non-negative subcategory C of a triangulated category T
inherits an exact structure from the triangulated structure: The short exact sequences L

f−→
M

g−→ N in C are precisely those that fit into an exact triangle L
f−→ M

g−→ N
h−→ �L .

Remark 2.3 With the notation of ‘admissible exact’ we follow [2, Définition 1.2.5] and [12,
Section 2]; the former only considers ‘admissible abelian’, while the latter dropped ‘exact’.
We use admissible exact to avoid confusion with the notions of left/right admissible in the
sense of [3, §1].
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The crucial condition of admissible exactness is the non-negativity. In fact, when C is non-
negative, then the smallest full subcategory closed under extensions and direct summands
containing C is an admissible exact subcategory.

Example 2.4 We equip an extension-closed subcategory C of an exact category E with the
induced exact structure; that is C is a fully exact subcategory of E . Then C is an admissible
exact subcategory of Db(E).

Example 2.5 The heart of any t-structure on a triangulated category is admissible exact. Any
intersection of admissible exact subcategories is admissible exact. Hence the intersection of
two hearts is admissible exact; this applies in particular for hearts that are mutations of each
other; see [7] for HRS tilting and [4] for the heart fan of an abelian category.

2.6 Weak realization functor

Next, we consider triangle functors Kb(C) → T extending the inclusion for any full sub-
category C of T ; such a functor can be considered as a realization functor for C with the
split exact structure. We call such a functor a weak realization functor. Under reasonable
conditions on the exact structure a weak realization functor induces a realization functor.

Lemma 2.7 Let C ⊆ T be a full subcategory with an exact structure. We assume there exists
a weak realization functor F : Kb(C) → T . If any exact sequence L → M → N in C fits
into an exact triangle L → M → N → �L in T , then F induces a realization functor such
that the following diagram commutes

Kb(C) Db(C)

T .

In particular, this holds when C is an admissible exact subcategory.

Proof It is enough to show that F sends acyclic complexes to zero. For this it is enough to
show that complexes of the form

(· · · → 0 → L → M → N → 0 → · · · ) = cone(cone(L → M) → N )

are send to zero when L → M → N is an exact sequence in C. But this holds by assumption.

Remark 2.8 The above condition on F, that any exact sequence in C fits into an exact triangle
in T , means that C → T is a δ-functor as defined in [16].

In the sequel we construct a weak realization functor. However, we do not know of a
general criterion for the existence of a weak realization functor. Our construction requires
some form of non-negativity. In particular, a weak realization functor may even exist for
C = T .

Example 2.9 Let k be a field and T = vect(k), the category of finite-dimensional k-vector
spaces with suspension � = id. We can view Kb(T ) as the category of finite-dimensional
Z-graded k-vector spaces vectZ(k) with suspension the shift of the grading. The forgetful
functor from graded k-vector spaces to ungraded k-vector spaces is a weak realization functor
for C = T . As Db(T ) = Kb(T ) we obtain the realization functor

Db(T ) = vectZ(k) → vect(k) = T .
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2.10 Existence

AFrobenius category is an exact categorywith enough projectives andwith enough injectives
and the projectives and injectives coincide. Let E be a Frobenius category with P the full
subcategory of projective-injective objects. The ideal quotient q : E → E with respect to the
morphisms factoring throughP has a natural triangulated structure by [10, I.2]. A triangulated
category is algebraic, if it is triangle equivalent to E for some Frobenius category; see [17,
3.6].

The key observation for the proof of Theorem 1.1 is the following result, which is stated
in [21, 3.2].

Proposition 2.11 Let E be a Frobenius category with P the full subcategory of projective-
injective objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full
subcategory and set B := q−1(C). Then the functor B → C induces an equivalence of
triangulated categories

Kb(B)/Kb(P) → Kb(C) .

Note, that in the equivalence connects the Verdier quotient of the homotopy category and
the homotopy category of an ideal quotient. We postpone the proof to Sect. 3.

Remark 2.12 In the Proposition we show that the tilting subcategory B in Kb(B) is send to
the tilting subcategory C under the Verdier quotient functor Kb(B) → Kb(B)/Kb(P). In
general, Verdier quotients need not preserve tilting subcategories.

Without the assumption that the subcategory C is non-negative the Proposition 2.11 is
false in general:

Example 2.13 Let k be a field and A = k[x]/(x2). Then E = mod(A) is a Frobenius category
and E = mod(k) is the category of finite-dimensional vector spaces which is a triangulated
category with � = id. We show below that Kb(mod(A))/Kb(proj(A)) is not equivalent to
Kb(mod(k)), that is that the conclusion of Proposition 2.11 does not hold for C = E , which
is not non-negative. Observe first that Kb(mod(k)) = Db(mod(k)) has no non-trivial thick
subcategory. But on the other hand Kb(mod(A))/Kb(proj(A)) admits a non-trivial Verdier
quotient

Kb(mod(A))/Kb(proj(A)) → Db(mod(A))/Kb(proj(A)) ∼= E;
see [5, Theorem 4.4.1]. In particular, the kernel of this Verdier quotient is a non-trivial thick
subcategory. Therefore they can not be triangle equivalent.

Proposition 2.14 Let E be a Frobenius category with P the full subcategory of projective-
injective objects and q : E → E the canonical functor. Let C ⊆ E be an admissible exact
subcategory. Then there exists a weak realization functor Kb(C) → E .

Proof. Set B := q−1(C). By Proposition 2.11 there exists an equivalence of triangulated
categories

F : Kb(B)/Kb(P) → Kb(C) .

There is also an equivalence
B : E → Db(E)/Kb(P) ;
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this has been stated in [21, Example 2.3] with proofs provided in [14, Corollary 2.2] or
[19, Proposition 4.4.18]. Then the following composition involving the quasi-inverses of the
above functors yields the claim

Kb(C)
F−1−−→ Kb(B)/Kb(P) → Kb(E)/Kb(P)

B−1−−→ E .

Proof of Theorem 1.1 By Proposition 2.14 there exists a weak realization functor, and it
induces a realization functor by Lemma 2.7.

From Proposition 2.11 we can also deduce the following corollary.

Corollary 2.15 Let C be an admissible exact subcategory of E . ThenB = q−1(C) is extension-
closed in E and the functor q : B → C sends exact sequences to exact triangles. In this case
q induces a triangle equivalence

Db(B)/Kb(P) → Db(C).

Proof It is straightforward to check that Kb(P) and Acb(B) are Hom-orthogonal in Kb(B).
Then Acb(B) is a full subcategory of Kb(B)/Kb(P) by [20, Proposition 1.6.10]. So it is
enough to show that the equivalence from Proposition 2.11 restricts to an equivalence of the
acyclic complexes Acb(B) → Acb(C).

The fully faithfullness of the restriction holds as Acb(B) is a full subcategory of
Db(B)/Kb(P). Essentially surjectivity holds as

Ext1B(X , Y ) ∼= HomE (X , �Y ) ∼= Ext1C(X , Y )

for any X , Y ∈ B.

2.16 Fully faithfulness and equivalence

Let C be an admissible exact subcategory of a triangulated category T . In this section we
discuss when a realization functor

R : Db(C) → T

is fully faithful and even an equivalence. The realization functor R induces natural group
homomorphisms

�n(X , Y ) := (ExtnC(X , Y )
∼=−→ HomDb(C)(X , �nY )

R−→ HomT (X , �nY ))

for X , Y ∈ C and n ∈ Z. Here ExtnC are the groups of Yoneda extensions for n ≥ 0 and we set
ExtnC := 0 for n < 0. For the isomorphism see for example [19, Proposition 4.2.11]. These
natural morphisms have been considered in [8, Lemma 2.11] for hearts of t-structures and in
[26, A.8] for exact subcategories. The morphism �n(X , Y ) is an isomorphism for n < 0 as
C is non-negative, for n = 0 as C is full, and for n = 1 by [26, Corollary A.17]. Further, for
n = 2 it is a monomorphisms by [26, Corollary A.17]. The following result appears in [2,
Remarque 3.1.17] and [8, Lemma 2.11] when C is the heart of a bounded t-structure.

Lemma 2.17 Let C be an admissible exact subcategory of T and let R be a realization functor
of C. Then the following are equivalent

(1) R is fully faithful;
(2) �n(X , Y ) is an isomorphism for all X , Y ∈ C and n ∈ Z;
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(3) �n(X , Y ) is surjective for all X , Y ∈ C and n ∈ Z;
(4) For every X , Y ∈ C, n ≥ 1 and every morphism f : X → �nY in T there exists a

C-deflation d : Z → X with f ◦ d = 0 in T ; and
(4op) For every X , Y ∈ C, n ≥ 1 and every morphism f : X → �nY in T there exists an

C-inflation i : Y → W such that �ni ◦ f = 0 in T .

Proof The implication (1) �⇒ (2) is clear and the converse is an application of dévissage
using Db(C) = thickDb(C)(C); see for example [19, Lemma 3.1.8].

The implication (2) �⇒ (3) is clear and the converse is shown in [26, Corollary A.17].
A standard construction shows that (2) is equivalent to

(5) Every f : X → �nY in T with X , Y ∈ C and n ≥ 1 decomposes as

X = X0 → �X1 → �2X2 → · · · → �n Xn = �nY

for Xi ∈ C;

see for example [8, Lemma 2.1] for the abelian case. Moreover, by induction over n this is
also equivalent to

(6) Every f : X → �nY in T with X , Y ∈ C and n ≥ 1 decomposes as X → �U → �nY
for some U ∈ C.

So it is enough to show that (4) and (6) are equivalent. For the backward direction it is
enough to observe that any morphism X → �U in T with X ,U ∈ C induces an exact

sequence U → Z
d−→ X in C. For the forward direction let f : X → �nY be a morphism in

T with X , Y ∈ C and n ≥ 1. Then there exists a deflation d : Z → X such that f ◦ d = 0.

We complete d to an exact sequenceU → Z
d−→ X in C. Then f factors through the induced

morphism X → �U . This shows (6).
The equivalence of (2) and (4 op) holds by an analogous argument.

Remark 2.18 The previous Lemma can be strengthened to yield an explicit description of
the image of �n(X , Y ). That is, the subgroup im(�n(X , Y )) is the set of all morphisms
f : X → �nY with X , Y ∈ C such that there exists a C-deflation d : Z → X such that
f ◦ d = 0.

For a subcategory C of a triangulated category T we denote by thickT (C) the smallest
thick subcategory of T that contains C.

Corollary 2.19 Let C be an admissible exact subcategory of T . A realization functor of C is
an equivalence of triangulated categories if and only if it is fully faithful and thickT (C) = T .

Example 2.20 Let C be a fully exact subcategory of E . Then the induced functor F : Db(C) →
Db(E) is a realization functor for C ⊆ Db(E). The functor F is fully faithful if and only if the
inclusion C ⊆ E induces isomorphism on the Ext-groups. For example, the latter condition
is satisfied by resolving subcategories; see [1, Section 2] and also [11, Definition 5.1].

The functor F is an equivalence if additionally E is the smallest additively-closed subcat-
egory closed under the 2-out-of-three property containing C. For example, this is satisfied by
finitely resolving subcategories; cf. [13, Theorem 3.11(2)].
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3 Proof of themain Proposition

For clarity we use different notations for the suspension in the stable category and the homo-
topy category.Wewrite� for the suspension or shift functor in E where E is a Frobenius exact
category. By construction, we have q(�n X) = �−n X for any X ∈ E where � is the syzygy
functor. On the other hand, for an additive category A we write Ch(A) for the category of
chain complexes. In Ch(A) and the homotopy category K(A), we denote the degree n shift
of a complex X by X [n]; this is the complex given by

X [n]� = X�+n and dX [n] = (−1)ndX .

For a map of complexes f : X → Y we write

∂( f ) = dY f − f [−1]dX : X → Y [−1] .
The map f is a chain map if and only if ∂( f ) = 0. Note, that a map of complexes need not
commute with the differential, while a chain map does.

Lemma 3.1 Let E be a Frobenius exact category with P the full subcategory of projective-
injective objects and q : E → E the canonical functor. Let C ⊆ E be a non-negative full
subcategory and set B := q−1(C). For any chain map f : q(X) → q(Y ) in Ch(E) with
X ∈ Ch+(B) and Y ∈ Ch−(B) there exist chain maps g : X̂ → Y and s : X̂ → X with
X̂ ∈ Ch+(B) and cone(s) ∈ Chb(P) such that q(g) = f ◦ q(s).

Proof First we construct an injective resolution I of X in the category of complexes. By [15,
4.1, Lemma, b)], there exists a left bounded complex I0 of projective-injective objects and a
chain map j0 : X → I0 that is an inflation in each degree. We denote the cokernel of j0 by
q0 : I0 → �−1X . Continuing this process, we obtain a sequence of chain maps

�−1X �−2X �−3X

X I0 I1 I2 · · · .
j1 j2

h−1= j0

h0

q0

h1

q1 q2

We set h−1 := j0 and h� := j�+1q�. As X is left bounded we may assume that there exists an
integer s such that (I�)≤s = 0 for all �; that is s is a universal lower bound. Since the maps j�
are degreewise inflations, every map from�−�X to a complex of projective-injective objects
factors through j�.

We take a lift of f to amapof complexes f̂ : X → Y inCh(E). Thismapneednot commute
with the differential. However, as it is the lift of a chainmap in E themap ∂( f̂ ) factors through
a complex of projective-injective objects. So there exists a map g0 : I0 → Y [−1] such that
∂( f̂ ) = g0 j0. For convenience we set q−1 := idX and g−1 := f̂ . We now inductively
construct maps g� : I� → Y [−� − 1] with ∂(g�−1) = g� j�q�−1.

We assume that we have constructed the maps for any integer ≤ � for some � ≥ 0. Then
0 = ∂(g�) j�q�−1 as j� and q�−1 are chainmaps. As q�−1 consists of deflations in each degree,
we get 0 = ∂(g�) j�. Hence ∂(g�) factors through q� and we obtain the commutative diagram

�−�X I� �−�−1X

Y [−� − 2] I�+1 .

j�

0

q�

∂(g�) j�+1

g�+1

By the non-negativity of C, we have

HomCh(E)(q(�−�−1X), q(Y [−� − 2])) = HomCh(E)(�
�+1q(X), q(Y [−� − 2])) = 0 .
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Hence the map �−�−1X → Y [−� − 2] factors through j�+1. Note, that g�+1 need not be a
chain map.We continue this process until the map g�+1 is a chain map. As Y is right bounded
and the I�’s have a universal upper bound, this will happen eventually.

Let t be an integer such that Y≥t = 0. We replace I� by the truncation (I�)�t−�−1. This
does not effect the properties of the g�’s, as they are zero in the other degrees. To summarize,
we have a sequence of maps

X I0 I1 · · · In−1 In

Y Y [−1] Y [−2] · · · Y [−n] Y [−n − 1] ,

h−1

f̂ =g−1

h0

g0 g1

hn−1

gn−1 gn

where each I� is a bounded complex of projective-injective objects, gn is a chain map and
∂(g�−1) = g�h�−1 and h�h�−1 = 0 for 0 ≤ � ≤ n.

We take the total complex J of I0 → · · · → In . Thismeans as gradedmodule J = ⊕
Ii [i]

with differential
dJ |Ii [i] = dIi [i] + (−1)i hi [i] .

For convenience we use a nonstandard sign convention. We set

v :=
∑

i

gi [i] : J → Y [−1] .

This is a chain map, as

(vdJ )|Ii [i] = gi [i − 1]dIi [1] + (−1)i gi+1[i]hi [i]
= (−1)i (gi [−1]dIi + gi+1hi )[i]
= (−1)i (dY [−i−1]gi )[−i] = dY [−1]gi [i] = (dY [−1]v)

∣
∣
Ii [i] .

One can similarly check that the composition u := (X → I0 → J ) is a chain map. By
construction we have ∂( f̂ ) = vu. Then X̂ = �−1 cone(u) and g = (−v, f̂ ) and the natural
map s : X̂ → X satisfy the desired properties.

Lemma 3.2 Let E be a Frobenius exact category with P the full subcategory of projective-
injective objects and q : E → E the canonical functor. Let X ∈ Kb(E). If q(X) = 0 inKb(E),
then X ∈ Kb(P).

Proof It is enough to show the claim for a complex of the form

X = (· · · → 0 → X0 d0−→ X1 d1−→ X2 → · · · → Xn−1 dn−1−−→ Xn → 0 → · · · )
for any n ≥ 0. We use induction on n.

For n = 0, the assumption q(X) = 0 implies q(X0) = 0. Hence X0 ∈ P .
Letn ≥ 1.Asq(X) = 0, themorphismq(d0) is a splitmonomorphism inE and there exists

a morphism s : X1 → X0 such that sd0 − idX0 = ba for some morphisms X0 a−→ P
b−→ X0

with P ∈ P . We view P as a complex concentrated in degree zero and set

X ′ := cone(�−1a) = (· · · → 0 → X0

(
d0
a

)

−−−→ X1 ⊕ P
( d1 0 )−−−−→ X2 d2−→ X3 → · · · ) .

Since ( s −b ) ◦ (
d0
a

) = idX0 , the zero differential of X ′ is a split monomorphism in E .
Therefore, in Kb(E), the complex X ′ is isomorphic to a complex Y concentrated between
degrees 1 and n. In Kb(E) we have q(Y ) ∼= q(X ′) ∼= q(X) = 0. By induction hypothesis we
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have X ′ ∼= Y ∈ Kb(P). By construction there is an exact triangle X ′ → P → X → �X ′,
and as X ′, P ∈ Kb(P), so is X .

Proof of Proposition 2.11 As q(Kb(P)) = 0 in Kb(E), the functor q : Kb(B) → Kb(C)

induces a triangle functor
q : Kb(B)/Kb(P) → Kb(C) .

We claim that q is an equivalence of triangulated categories. For this we need to show that q
is full, faithful and essentially surjective.

The functor q is full by Lemma 3.1. By Lemma 3.2, whenever q(X) = 0 then X = 0. As
we already know that q is full, this implies that q is faithful by [28, p. 446]; also see [29, 4.3,
4.4].

It remains to show that q is essentially surjective. The essential image of q is a thick sub-
category containing the complexes concentrated in degree zero. As these complexes generate
Kb(C), the functor q is essentially surjective.
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