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Abstract

Let A be a nonempty subset of positive integers. In this paper we study the set of
numerical semigroups that fulfill: if {x, y} ⊆ N\S and x > y > min(S\{0}), then
x− y ̸∈ A.
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1 Introduction
Let Z be the set of integers and let N = {z ∈ Z | z ≥ 0}. A submonoid of N is a subset of
N closed under addition, containing the zero element. A submonoid with finite complement
in N is a numerical semigroup.

If S is a numerical semigroup, then m(S) = min(S\{0}), F(S) = max(Z\S) and
g(S) = #(N\S) (the cardinalty of N\S) are three importants invariants of S known as
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multiplicity, Frobenius number and genus of S, respectively (see [1] and [4]). We denote
by H(S) = {x ∈ N\S | x > m(S)}.

For m a positive integer, the semigroup {0,m,→} is denoted here by △(m) and it is
called half-line or ordinary (the symbol → means that every integer greater than m belongs
to the set).

Let A be a nonempty set of N\{0}. A PD(A)-semigroup is a numerical semigroup S
such that H(S)+A ⊆ S. Our main purpose in this work is to study this class of numerical
semigroups. In particular, we will study the sets P(A) = {S | S is a PD(A)-semigroup}
and P

(
A,m

)
= {S ∈ P(A) |m(S) = m}. Its study is clearly motivated by generalizing

to other classes of semigroups studied before, such as:

(1) We say that a numerical semigroup S is elementary if F(S) < 2m(S). The concept
of elementary numerical semigroup is studied in [2] and comprehensively in [7]. If
we denote by E(m) the set of elementary numerical semigroups with multiplicity m,
then we have that E(m) = P

(
{m},m

)
.

(2) Given a numerical semigroup S and s ∈ S, we denote the concentration of a numer-
ical semigroup S by C(S) = max {nextS(s)− s | s ∈ S\{0}} wherein nextS(s) =
min {x ∈ S | s < x}. Recently, the authors studied the class of numerical semi-
groups with concentration two [8]. It is easy to see that this class coincides with the
set P

(
{1},m

)
\△(m).

This work is organized as follows. In Section 2, we will order the elements of P(A) to
construct a tree with root N. This ordering will provide us an algorithmic procedure that
allows us to recursively build the elements of P(A).

In Section 3, we will show that P
(
A,m

)
has infinite cardinality if and only if m is a

even number and all elements in A are odd numbers.
If S is a numerical semigroup, we denote by P (S) = {x ∈ S |m(S) < x < 2m(S)}.

A subset, X , of {m+ 1,m+ 2, . . . , 2m− 1} is a PD(A,m)-set if X = P (S)
for some a PD(A,m)-semigroup. If X is a PD(A,m)-set we denote by
γ(X) = {S ∈ PD(A,m) | P (S) = X}. In Section 4, we will see that the set
{γ(X) | X is a PD(A,m)-set} is a partition of the set P

(
A,m

)
. Furthermore, follow-

ing the notation introduced in [5], we will prove that γ(X) is a Frobenius pseudo-variety.
We will show that the elements of the set {γ(X) | X is a PD(A,m)-set} can be ordered in
a finite tree. From this, we will see that the set P

(
A,m

)
is a finite tree wherein its vertices

are Frobenius pseudo-varieties.
Finally, in Section 5 we will provide algorithms to produce all elements in P

(
A,m

)
with fixed genus or fixed Frobenius number.

2 The tree of PD(A)-semigroups
Throughout this paper A will be a nonempty set of N\{0}. The next result is easy to prove.

Lemma 2.1. If S is a PD(A)-semigroup and S ̸= N, then S ∪ {F (S)} is a PD(A)-
semigroup.

The above result enable us, given a PD(A)-semigroup, S, to define recursively the
following sequence of a PD(A)-semigroups, as:

• S0 = S,
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• Sn+1 =

{
Sn ∪ {F(Sn)} if Sn ̸= N
N otherwise.

The next result is trivial.

Proposition 2.2. If S is a PD(A)-semigroup and {Sn | n ∈ N} is the previous sequence
of numerical semigroups, then there exists k ∈ N such that Sk = N.

A graph G = (V,E) consists of nonempty set V and a collection E of ordered pairs
(v, w) of distinct elements from V . Elements of V are called a vertices and elements of E
are called edges. A path of length n connecting the vertices u and v of G is a sequence of
n distinct edges of the form (v0, v1), (v1, v2), . . . , (vn−1, vn) with v0 = u and vn = v.

A graph G is a tree if there exists a vertex r (known as the root of G) such that for every
other vertex v of G, there exists a unique path connecting v and r. If (u, v) is a edge of the
tree then we say that u is a child of v. If there exists a path connecting the vertices u and v,
then we say that u is a descendant of v.

We define the graph G
(
P(A)

)
as the graph whose vertices are elements of P

(
A
)

and
(S, T ) ∈ P

(
A
)
× P

(
A
)

is an edge if T = S ∪ {F(S)}. As a consequence of Lemma 2.2,
we have the following.

Proposition 2.3. The graph G
(
P(A)

)
is a tree with root equal to N.

Clearly, we can be construct recursively the elements of the set P(A), starting in N, we
connect each vertex with its children. Therefore, we need to characterize the children of an
arbitrary vertex of this tree, for that we need the following results.

If X is a nonempty subset of N, we denote by ⟨X ⟩ the submonoid of (N,+) generated
by X , that is,

⟨X ⟩ =

{
n∑

i=1

λi xi | n ∈ N\ {0} , xi ∈ X , λi ∈ N and i ∈ {1, . . . n}

}
.

Lemma 2.4 ([9, Lemma 2.1]). Let X be a nonempty subset of N. Then ⟨X ⟩ is a numerical
semigroup if and only if gcd(X ) = 1.

If M is a submonoid of (N,+) and M = ⟨X ⟩ then we say that X is a system of
generators of M . Moreover, if M ̸= ⟨Y⟩ for all Y ⊊ X , then we say that X is a minimal
system of generators of M .

Lemma 2.5 ([9, Corollary 2.8]). Every submonoid of (N,+) has a unique minimal system
of generators, which is finite.

Given a submonoid of (N,+), M , we denote by msg(M) the minimal system of gen-
erators of M , its cardinality is called the embedding dimension of M and it is denoted by
e(M).

Lemma 2.6 ([6, Lemma 1.7]). Let S be a numerical semigroup and x ∈ S. Then S\{x}
is a numerical semigroup if and only if x ∈ msg(S).

We already have conditions to characterize the children of a vertex S in the tree
G
(
P(A)

)
.
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Proposition 2.7. If S ∈ P(A), then the set of children of S in the tree G
(
P(A)

)
is equal

to {S\{x} | x ∈ msg(S), x > F(S) and x− a ̸∈ H(S\{x}), for all a ∈ A}.

Proof. If T is a child of S, then T ∈ P(A) and S = T ∪ {F (T )}. Hence, we can
deduce that T = S\{F (T )}. Using Lemma 2.6, we have that F (T ) ∈ msg(S) and as
S = T ∪ {F (T )} then F (S) < F (T ). Moreover, since T ∈ P(A) and F(T ) ̸∈ T , then
F(T )− a ̸∈ H(T ) for all a ∈ A.

Conversely, suppose that x ∈ msg(S), x > F(S) and x−a ̸∈ H(S\{x}) for all a ∈ A.
Then, by Lemma 2.6, S\{x} is a numerical semigroup with F(S\{x}) = x. By applying
x− a ̸∈ H(S\{x}) for all a ∈ A and S ∈ P(A), we deduce that S\{x} ∈ P(A). Finally,
as S = (S\{x}) ∪ F(S\{x}) then S\{x} is a child of S in the tree G(P

(
A
)
.

Note that, since half-line △(m) ∈ P(A) for all m ∈ N, then we get that the set P(A)
has infinite cardinality.

Example 2.8. Let us construct the tree G
(
P({2})

)
.

N

⟨2, 3⟩

⟨3, 4, 5⟩ ⟨2, 5⟩

⟨4, 5, 6, 7⟩ ⟨3, 5, 7⟩ ⟨3, 4⟩

⟨5, 6, 7, 8, 9⟩ ⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩ ⟨4, 5, 6⟩ ⟨3, 7, 8⟩ ⟨3, 5⟩
...

...
...

...
...

...
...

...

1

2 3

3 4 5

4 5 76 5 7

An edge S → T is labelled x whenever S is obtain from T by removing x, that is,
S = T\{x}.

The number that appears on each side of the edges is the element that we remove from
the semigroup to obtain its corresponding new children. This number coincide with the
Frobenius number of the corresponding child.

3 PD(A)-semigroups with a given multiplicity
From now on m denotes a positive integer greater than or equal to 2. Our first aim in
this section is to see which conditions must m and A fulfill so that P

(
A,m

)
has infinite

cardinality.



Acc
ep

te
d m

an
usc

rip
t

J. C. Rosales et al.: Numerical semigroups with non-admissible distances . . . 5

If S is a numerical semigroup, then N\S is a finite set and so we get the following
result.

Lemma 3.1. Let S be a numerical semigroup, the set
{T | T is a numerical semigroup and S ⊆ T} is a finite set.

Lemma 3.2. Let the hypothesis be as above. Then the following conditions hold:

(1)
{
S ∈ P

(
A,m

)
|m+ 1 ∈ S

}
is a finite set.

(2)
{
S ∈ P

(
A,m

)
| 2m− 1 ∈ S

}
is a finite set.

(3) If x ∈ {m+ 1,m+ 2, . . . , 2m− 2}, then{
S ∈ P

(
A,m

)
| {x, x+ 1} ⊆ H(S)

}
is a finite set.

(4) If x ∈ {m+ 1,m+ 2, . . . , 2m− 2}, then{
S ∈ P

(
A,m

)
| {x, x+ 1} ⊆ S

}
is a finite set.

Proof. (1) Since gcd{m,m + 1} = 1, then by Lemma 2.4, we get that ⟨m,m + 1⟩
is a numerical semigroup. It is clear that

{
S ∈ P

(
A,m

)
|m+ 1 ∈ S

}
⊆

{T | T is a numerical semigroup and ⟨m,m+ 1⟩ ⊆ T} and, by Lemma 3.1, the
last set is finite.
(2) The proof is similar to (1) using 2m− 1 in place of m+ 1.
(3) As {x, x + 1} ⊆ H(S), if a ∈ A, then {x + a, x + a +
1} ⊆ S and gcd{x + a, x + a + 1} = 1. To conclude the proof
it is enough to note that

{
S ∈ P

(
A,m

)
| {x, x+ 1} ⊆ H(S)

}
⊆

{T | T is a numerical semigroup and ⟨x+ a, x+ a+ 1⟩ ⊆ T} and, by Lemma 3.1,
the last set is finite.
(4) Clearly

{
S ∈ P

(
A,m

)
| {x, x+ 1} ⊆ S

}
⊆

{T | T is a numerical semigroup and ⟨x, x+ 1⟩ ⊆ T} and, again by Lemma 3.1,
the last set is finite.

Lemma 3.3. With above notation. If P
(
A,m

)
has infinite cardinality, then m is a even

number.

Proof. By using (1) and (3) of Lemma 3.2, we deduce that if the set P
(
A,m

)
has infinite cardinality, then

{
S ∈ P

(
A,m

)
|m+ 1 ̸∈ S and m+ 2 ∈ S

}
is

also an infinite set. Since
{
S ∈ P

(
A,m

)
|m+ 1 ̸∈ S and m+ 2 ∈ S

}
⊆

{T | T is a numerical semigroup and ⟨m,m+ 2⟩ ⊆ T}, by applying Lemmas 2.4
and 3.1, we obtain that gcd{m,m+ 2} ≠ 1 and, consequently, m is an even number.

Lemma 3.4. With above notation. If P
(
A,m

)
has infinite cardinality, then all elements in

A are odd numbers.

Proof. For the same reasons as previously, we have that{
S ∈ P

(
A,m

)
| m+ 1 ̸∈ S and m+ 2 ∈ S

}
is an infinite set. If a ∈ A, then we get that

{m,m+ 2,m+ 1 + a} ⊆ S and
{
S ∈ P

(
A,m

)
|m+ 1 ̸∈ S and m+ 2 ∈ S

}
⊆

{T | T is a numerical semigroup and ⟨m,m+ 2,m+ 1 + a⟩ ⊆ T}. By using
Lemma 3.1, we can deduce that gcd{m,m + 2,m + 1 + a} = gcd{m, 2, 1 + a} ≠ 1.
Hence gcd{m, 2, 1 + a} = 2 and so a is an odd number.
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We are ready to show the above announced result.

Theorem 3.5. With above notation. The set P
(
A,m

)
has infinite cardinality if and only if

m is an even number and all elements in A are odd numbers.

Proof. Necessity. This is an immediate consequence of Lemmas 3.3 and 3.4.
Sufficiency. For each n ∈ {m,→} we denote by S(n) =

{
2k | k ∈

{
0, m

2 ,→
}}

∪
{n,→}. It is easy to see that S(n) ∈ P

(
A,m

)
for all n ∈ {m,→} and thus P

(
A,m

)
has

infinite cardinality.

We define the graph G
(
P(A,m)

)
as the graph whose vertices are elements of P

(
A,m

)
and (S, T ) ∈ P

(
A,m) × P

(
A,m

)
is an edge if T = S ∪ {F(S)}. In the same way as in

Section 2, we have the following result.

Proposition 3.6. The graph G
(
P(A,m)

)
is a tree with root equal to △(m).

Furthermore, the set of children of S in the tree G
(
P(A,m)

)
is equal to

{S\{x} | x ∈ msg(S), x ̸= m, x > F(S) and x− a ̸∈ H(S\{x}) for all a ∈ A}.

In the next examples we are going to build the trees G
(
P({2}, 4)

)
and G

(
P({3}, 4)

)
.

Observe that by Theorem 3.5, we get that the first is finite and the second is infinite.

Example 3.7. We are going to build the the tree G
(
P({2}, 4)

)
.

⟨4, 5, 6, 7⟩

⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩ ⟨4, 5, 6⟩

⟨4, 7, 9, 10⟩ ⟨4, 6, 7⟩ ⟨4, 5, 11⟩

⟨4, 7, 10, 13⟩ ⟨4, 7, 9⟩ ⟨4, 5⟩

⟨4, 7, 13⟩ ⟨4, 7, 10⟩

⟨4, 7, 17⟩

⟨4, 7⟩

5 6 7

6 9 7

9 10 11

10 13

13

17



Acc
ep

te
d m

an
usc

rip
t

J. C. Rosales et al.: Numerical semigroups with non-admissible distances . . . 7

Example 3.8. We are going to construct the the tree G
(
P({3}, 4)

)
.

⟨4, 5, 6, 7⟩

⟨4, 6, 7, 9⟩ ⟨4, 5, 7⟩ ⟨4, 5, 6⟩

⟨4, 7, 9, 10⟩ ⟨4, 6, 9, 11⟩ ⟨4, 6, 7⟩ ⟨4, 5, 11⟩

⟨4, 9, 10, 11⟩ ⟨4, 7, 9⟩ ⟨4, 6, 11, 13⟩ ⟨4, 6, 9⟩ ⟨4, 5⟩

⟨4, 9, 10, 15⟩ ⟨4, 6, 13, 15⟩ ⟨4, 6, 11⟩

⟨4, 9, 10⟩ ⟨4, 6, 15, 17⟩ ⟨4, 6, 13⟩
...

...

5 6 7

6 7 9 7

7 10 9 11 11

11 11 13

15 13 15

4 Partition of the set P
(
A,m

)
Given a numerical semigroup S, we denote by

P (S) = {x ∈ S |m(S) + 1 ≤ x ≤ 2m(S)− 1} and by

P (S) = {m(S) + 1, . . . , 2m(S)− 1} \P (S).

Proposition 4.1. Let S be a numerical semigroup. Then S is an PD(A)-semigroup if and
only if P (S) +A ⊆ S.

Proof. As P (S) ⊆ H(S), if x ∈ P (S) then x ∈ H(S) and so {x}+ A ⊆ S. Conversely,
if h ∈ H(S) we have that i = h mod m ∈ {1, . . . ,m− 1} and m+ i ∈ P (S). Moreover,
there exists q ∈ N such that h = m+ i+q ·m. Hence, {h}+A = {m+ i}+A+{q ·m} ⊆
S.

Let R be the equivalence relation defined on P
(
A,m

)
by

S R T if and only if P (S) = P (T ).

Let [S] be denote the class of S ∈ P
(
A,m

)
modulo R, that is,

[S] =
{
T ∈ P

(
A,m

)
| S R T

}
.
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Hence, the quotient set of P
(
A,m

)
induce by R is the set

P
(
A,m

)
/R =

{
[S] | S ∈ P

(
A,m

)}
.

The power set of a set X is the set of all subsets of X , denote by P(X) = {Y | Y ⊆ X}.

Proposition 4.2. The correspondence

φ : P
(
A,m

)
/R → P

(
{m+ 1, . . . , 2m− 1}

)
such that φ([S]) = P (S) is an injective map.

Proof. Clearly, φ is a map, because if [S] = [T ] then S R T and so P (T ) = P (S).
Since φ([S]) = φ([T ]) implies that P (T ) = P (S), and thus [S] = [T ], we get that φ is
injective.

A PD(A,m)-set is a subset, X , of {m+ 1, . . . , 2m− 1} that verifies: if a ∈ A, b ∈
{m+ 1, . . . , 2m− 1} \X and m+ 1 ≤ a+ b ≤ 2m− 1, then a+ b ∈ X .

Proposition 4.3. If φ is the map defined in Proposition 4.2, then Im(φ) =
{X | X is a PD(A,m)-set}.

Proof. If X ∈ Im(φ), then there exists S ∈ P
(
A,m

)
such that P (S) = X and thus

X ⊆ {m+ 1, . . . , 2m− 1}. Still, if a ∈ A, b ∈ {m+ 1, . . . , 2m− 1} \X then b ∈ H(S)
and so a+ b ∈ S. Consequently, if m+ 1 ≤ a+ b ≤ 2m− 1, then a+ b ∈ X . Hence, we
obtain that X is a PD(A,m)-set.

Conversely, if X is a PD(A,m)-set, then we deduce that SX = {0,m} ∪ X ∪
{2m,→} ∈ P

(
A,m

)
and P (SX) = X . Wherefore, X ∈ Im(φ).

Given X a PD(A,m)-set, we denote by γ(X) =
{
S ∈ P

(
A,m

)
| P (S) = X

}
. As a

consequence of Propositions 4.2 and 4.3, we establish the following result.

Theorem 4.4. With above notation, the set {γ(X) | Xis a PD(A,m)-set} defines a (dis-
joint) partition of P

(
A,m

)
.

Following the notation introduced in [5], a Frobenius pseudo-variety is a non-empty
family P of numerical semigroups that fulfils the following conditions:

(1) P has a maximum element (with respect to the inclusion order).

(2) If S, T ∈ P, then S ∩ T ∈ P.

(3) If S ∈ P and S ̸= max P , then S ∪ {F(S)} ∈ P.

Our next aim in this section is to prove that if X is a PD(A,m)-set, then γ(X) is a
Frobenius pseudo-variety.

Proposition 4.5. If X is a PD(A,m)-set, then γ(X) is a Frobenius pseudo-variety.

Proof. Clearly, SX = {0,m} ∪ X ∪ {2m,→} is the maximum element in the set γ(X).
If {S, T} ⊆ γ(X), then P (S) = X and P (T ) = X . Hence, we can conclude that
P (S ∩ T ) = X and so P (S ∩ T ) = P (S) = P (T ). By using Proposition 4.1, we have
that P (S) + A = P (S ∩ T ) + A ⊆ S ∩ T and thus S ∩ T ∈ P

(
A,m

)
. Consequently,

S ∩ T is an element of γ(X).
If S ∈ γ(X) and S ̸= SX , then we obtain that F(S) > 2m and thus S ∪ {F(S)} ∈

γ(X).
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Following the notation introduced in [2], a numerical semigroup S is elementary if
F(S) < 2m(S). In [7], a broad study of these semigroups is carried out which were also
studied in [3] and [10].

Proposition 4.6. The following conditions are equivalent.

(1) S is an elementary numerical semigroup and S ∈ P
(
A,m

)
.

(2) S = SX for some PD(A,m)-set X .

Proof. (1) implies (2). By Proposition 4.3, we obtain that P (S) is a PD(A,m)-set. If S
is elementary, then {2m,→} ⊆ S and thus S = {0,m} ∪ P (S) ∪ {2m,→} = SP (S).

(2) implies (1). From the proof of Proposition 4.5, we have that SX ∈ P
(
A,m

)
and

so SX is an elementary numerical semigroup.

Let E(A,m) =
{
S ∈ P

(
A,m

)
| S is elementary

}
= {SX | X is a PD(A,m)-set}.

The maximum element in the set E(A,m) is the half-line △(m). From Lemma 2.1, we can
deduce the following result.

Lemma 4.7. If S ∈ E(A,m) and S ̸= △(m), then S ∪ {F(S)} ∈ E(A,m).

The previous result allows us, given S ∈ E(A,m) to define recursively the following
sequence of elements in E(A,m) , as:

• S0 = S,

• Sn+1 =

{
Sn ∪ {F(Sn)} if Sn ̸= △(m)
△(m) otherwise.

Now, we define the graph G
(
E(A,m)

)
as the graph whose vertices are elements of

E(A,m) and (S, T ) ∈ E(A,m)×E(A,m) is an edge if T = S ∪ {F(S)}. It easy to prove
the following result.

Proposition 4.8. The graph G
(
E(A,m)

)
is a finite tree with root equal to the half-line

△(m).

It is clear that, if X is a PD(A,m)-set, then γ(X) = [SX ]. As a consequence of
Theorem 4.4 and Proposition 4.6, we obtain the next result.

Proposition 4.9. With above notation, the set {[S] | S ∈ E(A,m)} defines a (disjoint) par-
tition of P

(
A,m

)
.

By using Propositions 4.5, 4.8 and 4.9 we can formulate the following result.

Corollary 4.10. The set P
(
A,m

)
is a finite tree in which each vertex is a Frobenius

pseudo-variety .



Acc
ep

te
d m

an
usc

rip
t

10 Ars Math. Contemp.

5 Algorithms for computing all elements in P
(
A,m

)
From Theorem 4.4, we deduce that {γ(X) | X is a PD(A,m)-set} is a partition of the set
P
(
A,m

)
. Hence, in order to determine explicitly the elements in P

(
A,m

)
we will need:

(1) an algorithm to compute the set of all PD(A,m)-set.

(2) an algorithm to compute the set γ(X), given X a PD(A,m)-set.

In the literature, there are many algorithms devoted to computing the power set of the
set {m+ 1, . . . , 2m− 1}, that is, P

(
{m+ 1, . . . , 2m− 1}

)
. Moreover, it is easy to check

whether an element of this set is a PD(A,m)-set. Since we have problem (1) solved, we
give the following example.

Example 5.1. Let us fully compute the set PD
(
{2}, 5

)
-set. We need the set

P
(
{6, 7, 8, 9}

)
=

{
∅, {6}, {7}, {8}, {9}, {6, 7}, {6, 8}, {6, 9}, {7, 8}, {7, 9},

{8, 9}, {6, 7, 8} , {6, 7, 9} , {6, 8, 9} , {7, 8, 9} , {6, 7, 8, 9}
}
.

Note that X ⊆ {6, 7, 8, 9} is a PD({2}, 5)-set that fulfills the following: if 6 ̸∈ X then
8 ∈ X , and if 7 ̸∈ X then 9 ∈ X . Hence, the PD

(
{2}, 5

)
-sets are

{6, 7}, {6, 9}, {7, 8}, {8, 9}, {6, 7, 8} , {6, 7, 9} , {6, 8, 9} , {7, 8, 9} , {6, 7, 8, 9} .

Our next goal in this section is to solve the issue 2). By Proposition 4.5, we know that
SX = {0,m} ∪ X ∪ {2m,→} is the maximum element in γ(X) and if S ∈ γ(X) such
that S ̸= SX , then S ∪ {F(S)} ∈ γ(X). Moreover, SX is the unique element in γ(X)
such that F(SX) < 2m.

If X is a PD(A,m)-set and S ∈ γ(X), then we can define recursively the following
sequence of elements in γ(X):

• S0 = S,

• Sn+1 =

{
Sn ∪ {F(Sn)} if F(Sn) > 2m
Sn otherwise.

The next result has immediate proof.

Lemma 5.2. If X is a PD(A,m)-set, S ∈ γ(X) and {Sn | n ∈ N} is the previous se-
quence of numerical semigroups in γ(X), then there exists k ∈ N such that Sk = SX .

We define the graph G
(
γ(X)

)
as the graph whose vertices are elements of γ(X) and

(S, T ) ∈ γ(X)× γ(X) is an edge if T = S ∪{F(S)}. It is not hard to prove the following
result.

Proposition 5.3. If X is a PD(A,m)-set, then the graph G
(
γ(X))

)
is a tree with root

equal to SX . Furthermore, the set of children of S in the tree G
(
γ(X)

)
is equal to

{S\{b} | b ∈ msg(S), b > max{F(S), 2m}, and b− a ̸∈ H(S\{b}), for all a ∈ A}.

We illustrate the above results with the following example.
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Example 5.4. Clearly the set {16, 17} is a PD
(
{6}, 9

)
-set. Let us compute the graph

G
(
γ({16, 17})

)
. By using Proposition 5.3, the graph G

(
γ({16, 17}))

)
is a tree with root

equal to S{16,17} = {0, 9} ∪ {16, 17} ∪ {18,→} = ⟨9, 16, 17, 19, 20, 21, 22, 23, 24⟩.
Using again Proposition 5.3, we compute the children of each vertex.

⟨9, 16, 17, 19, 20, 21, 22, 23, 24⟩

⟨9, 16, 17, 19, 20, 21, 23, 24, 31⟩
⟨9, 16, 17, 19, 20, 21, 22, 24⟩

⟨9, 16, 17, 19, 20, 21, 22, 23⟩

⟨9, 16, 17, 19, 20, 21, 24, 31⟩
⟨9, 16, 17, 19, 20, 21, 23, 31⟩

⟨9, 16, 17, 19, 20, 21, 23, 24⟩
⟨9, 16, 17, 19, 20, 21, 22⟩

⟨9, 16, 17, 19, 20, 21, 31⟩
⟨9, 16, 17, 19, 20, 21, 24⟩

⟨9, 16, 17, 19, 20, 21⟩

22
23

24

23 24 31 24

24 31

31

Now, we aim to give an algorithm to compute all elements in P
(
A,m

)
with a given

genus. For this purpose, we need to introduce some concepts and results.
Let G = (V,E) be a tree with root and v ∈ V . We define the depth of the vertex v as

the length of the path that connects v to the root of G, denoted by dv . If k ∈ N, we denote
by

N(G, k) = {v ∈ V | dv = k} .

We define the height of the tree G by h(G) = max {dv | v ∈ V }.
The next result is easy to prove.

Proposition 5.5. Let m ∈ N\{0, 1} and k ∈ N. Then the following conditions hold.

(1) N
(
G(P(A,m)), k

)
=

{
S ∈ P

(
A,m

)
| g(S) = m− 1 + k

}
.

(2) N
(
G(P(A,m)), k + 1

)
=

{
S | S is a child of an element in N

(
G(P(A,m)), k

)}
.

(3) If P
(
A,m

)
is an infinite set, then

{
g(S) | S ∈ P

(
A,m

)}
= {m− 1,→}.

(4) If P
(
A,m

)
is a finite set, then

{
g(S) | S ∈ P

(
A,m

)}
={

m− 1,m, . . . ,m− 1 + h
(
G(P(A,m)

)}
.
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We are already to present the advertised algorithm.

Algorithm 5.6. Input: g a positive integer greater than or equal to m− 1.
Output: The set

{
S ∈ P

(
A,m

)
| g(S) = g

}
.

1) Start with i = m− 1 and X = {⟨m,m+ 1, · · · , 2m− 1⟩}.

2) If i = g, then return X .

3) For each S ∈ X compute BS =
{
T | T is a child of S ∈ G

(
P(A,m)

)}
.

4) If the set
⋃

S∈X BS = ∅, return ∅.

5) X =
⋃

S∈X BS , i = i+ 1 and go to step 2).

Let us see in an example how our algorithm works.

Example 5.7. Let us compute the set
{
S ∈ P

(
{3}, 4

)
| g(S) = 6

}
.

(1) Start with i = 3 and X = {⟨4, 5, 6, 7⟩}.

(2) The first loop constructs B⟨4,5,6,7⟩ = {⟨4, 6, 7, 9⟩, ⟨4, 5, 7⟩, ⟨4, 5, 6⟩} and then X =
{⟨4, 6, 7, 9⟩, ⟨4, 5, 7⟩, ⟨4, 5, 6⟩}, i = 4.

(3) The second loop constructs B⟨4,6,7,9⟩ = {⟨4, 7, 9, 10⟩, ⟨4, 6, 9, 11⟩, ⟨4, 6, 7⟩},
B⟨4,5,7⟩ = {⟨4, 5, 11⟩} and B⟨4,5,6⟩ = ∅ and then X =
{⟨4, 7, 9, 10⟩, ⟨4, 6, 9, 11⟩, ⟨4, 6, 7⟩, ⟨4, 5, 11⟩}, i = 5.

(4) The third loop constructs B⟨4,7,9,10⟩ = {⟨4, 9, 10, 11⟩, ⟨4, 7, 9⟩}, B⟨4,6,9,11⟩ =
{⟨4, 6, 11, 13⟩, ⟨4, 6, 9⟩} and B⟨4,6,7⟩ = ∅ and B⟨4,5,11⟩ = {⟨4, 5⟩} then X =
{⟨4, 9, 10, 11⟩, ⟨4, 7, 9⟩, ⟨4, 6, 11, 13⟩, ⟨4, 6, 9⟩, ⟨4, 5⟩}, i = 6.

(5) Return
{
S ∈ P

(
{3}, 4

)
| g(S) = 6

}
=

= {⟨4, 9, 10, 11⟩, ⟨4, 7, 9⟩, ⟨4, 6, 11, 13⟩, ⟨4, 6, 9⟩, ⟨4, 5⟩}.

We finish this section showing an algorithm which allows us to compute all elements in
P
(
A,m

)
, with a given Frobenius number. The operation of this algorithm is based on the

fact that if S is a vertex of the tree G
(
P(A,m)

)
then every descendant of S has a Frobenius

number greater than F(S).

Algorithm 5.8. Input: F a positive integer greater than or equal to m− 1 and m ∤ F .
Output: The set

{
S ∈ P

(
A,m

)
| F(S) = F

}
.

1) Start with C = ∅ and X = {⟨m,m+ 1, . . . , 2m− 1⟩}.

2) For each S ∈ X compute BS =
{
T | T is a child of S ∈ G

(
P(A,m)

)}
, CS =

{T ∈ BS | F(T ) = F} and DS = {T ∈ BS | F(T ) < F}.

3) Do C = C ∪
{⋃

S∈X CS

}
.

4) If the set
⋃

S∈X DS = ∅, return C.

5) Do X =
⋃

S∈X DS and go to step 2).
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Example 5.9. Let us compute the set
{
S ∈ P

(
{3}, 4

)
| F(S) = 7

}
.

(1) Start with with C = ∅ and X = {⟨4, 5, 6, 7⟩}.

(2) The first loop constructs B⟨4,5,6,7⟩ = {⟨4, 6, 7, 9⟩, ⟨4, 5, 7⟩, ⟨4, 5, 6⟩}, C⟨4,5,6,7⟩ =
{⟨4, 5, 6⟩} and D⟨4,5,6,7⟩ = {⟨4, 6, 7, 9⟩, ⟨4, 5, 7} then C = {⟨4, 5, 6⟩} and X =
{⟨4, 6, 7, 9⟩, ⟨4, 5, 7⟩}.

(3) The second loop constructs B⟨4,6,7,9⟩ = {⟨4, 7, 9, 10⟩, ⟨4, 6, 9, 11⟩, ⟨4, 6, 7⟩},
C⟨4,6,7,9⟩ = {⟨4, 6, 9, 11⟩} and D⟨4,6,7,9⟩ = {⟨4, 7, 9, 10⟩},
and it constructs B⟨4,5,7⟩ = {⟨4, 5, 11⟩}, C⟨4,5,7⟩ = {⟨4, 5, 11⟩} and D⟨4,5,7⟩ = ∅
then C = {⟨4, 5, 6⟩, ⟨4, 6, 9, 11⟩, ⟨4, 5, 11⟩} and X = {⟨4, 7, 9, 10⟩}.

(4) The third loop constructs B⟨4,7,9,10⟩ = {⟨4, 9, 10, 11⟩, ⟨4, 7, 9⟩},
C⟨4,7,9,10⟩ = {⟨4, 9, 10, 11⟩} and D⟨4,7,9,10⟩ = ∅ then C =
{⟨4, 5, 6⟩, ⟨4, 6, 9, 11⟩, ⟨4, 5, 11⟩, ⟨4, 9, 10, 11⟩}

(5) Return
{
S ∈ P

(
{3}, 4

)
| F(S) = 7

}
=

= {⟨4, 5, 6⟩, ⟨4, 6, 9, 11⟩, ⟨4, 5, 11⟩, ⟨4, 9, 10, 11⟩}.
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